Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301813

RESUMO

This study looked at the toxic impacts of water-born acrylamide (ACR) on Nile tilapia (Oreochromis niloticus) in terms of behaviors, growth, immune/antioxidant parameters and their regulating genes, biochemical indices, tissue architecture, and resistance to Aeromonas hydrophila. As well as the probable ameliorative effect of Chlorella vulgaris (CV) microalgae as a feed additive against ACR exposure was studied. The 96-h lethal concentration 50 of ACR was investigated and found to be 34.67 mg/L for O. niloticus. For the chronic exposure study, a total of 180 healthy O. niloticus (24.33 ± 0.03 g) were allocated into four groups in tri-replicates (15 fish/replicate), C (control) and ACR groups were fed a basal diet and exposed to 0 and 1/10 of 96-h LC50 of ACR (3.46 mg/L), respectively. ACR+ CV5 and ACR+ CV10 groups were fed basal diets with 5 % and 10 % CV supplements, respectively and exposed to 1/10 of 96-h LC50 of ACR for 60 days. After the exposure trial (60 days) the experimental groups were challenged with A. hydrophila. The findings demonstrated that ACR exposure induced growth retardation (P˂0.01) (lower final body weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, final body length, and condition factor as well as higher feed conversion ratio). A substantial decrease in the immune/antioxidant parameters (P˂0.05) (lysozyme, serum bactericidal activity %, superoxide dismutase, and reduced glutathione) and neurotransmitter (acetylcholine esterase) (P˂0.01) was noticed with ACR exposure. A substantial increase (P˂0.01) in the serum levels of hepato-renal indicators, lipid peroxidation biomarker, and cortisol was noticed as a result of ACR exposure. ACR exposure resulted in up-regulation (P˂0.05) of the pro-inflammatory cytokines and down-regulation (P˂0.05) of the antioxidant-related gene expression. Furthermore, the hepatic, renal, brain, and splenic tissues were badly affected by ACR exposure. ACR-exposed fish were more sensitive to A. hydrophila infection and recorded the lowest survival rate (P˂0.01). Feeding the ACR-exposed fish with CV diets significantly improved the growth and immune/antioxidant status, as well as modulating the hepatorenal functions, stress, and neurotransmitter level compared to the exposed-non fed fish. In addition, modulation of the pro-inflammatory and antioxidant-related gene expression was noticed by CV supplementation. Dietary CV improved the tissue architecture and increased the resistance to A. hydrophila challenge in the ACR-exposed fish. Noteworthy, the inclusion of 10 % CV produced better results than 5 %. Overall, CV diets could be added as a feed supplement in the O. niloticus diet to boost the fish's health, productivity, and resistance to A. hydrophila challenge during ACR exposure.


Assuntos
Chlorella vulgaris , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Antioxidantes/metabolismo , Resistência à Doença , Dieta/veterinária , Suplementos Nutricionais , Neurotransmissores/metabolismo , Peso Corporal , Transtornos do Crescimento , Acrilamidas , Ração Animal/análise , Doenças dos Peixes/induzido quimicamente , Infecções por Bactérias Gram-Negativas/veterinária
2.
Biol Trace Elem Res ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416342

RESUMO

The harmful impact of waterborne copper (Cu) as a common abiotic stressor in aquatic environments has gained much more interest. The present study aimed to investigate the utilization of zinc oxide nanoparticles (ZnONPs) dietary supplementation to mitigate the chronic toxicity of Cu in African catfish (Clarias gariepinus). Two hundred and forty fish (92.94 ± 0.13 g) were assigned into six groups for 60 days. Control (C), ZnONPs20, and ZnONPs30 groups were fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs without Cu exposure. Cu, Cu + ZnONPs20, and Cu + ZnONPs30 groups were exposed to Cu at a dose of 10 mg L-1 and fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs, respectively. The results revealed that the Cu-exposed fish experienced abnormal clinical signs and behavioral changes. The growth indices and acetylcholine esterase activity were significantly decreased (P < 0.05) in the Cu group. Meanwhile, hepatorenal and serum stress indices (P < 0.05) were significantly elevated with chronic Cu exposure. In addition, a higher expression of stress (P < 0.05) (heat shock protein 60 and hypoxia-inducible factor-1 alpha) and apoptotic-related genes (C/EBP homologous protein, caspase-3, and Bcl-2 Associated X-protein) with down-regulation (P < 0.05) of the anti-apoptotic-related genes (B-cell lymphoma 2 and proliferating cell nuclear antigen) was noticed in the Cu-exposed fish. Histopathological alterations in the gills, liver, kidney, and spleen were markedly reported in the Cu-exposed group. The dietary supplementation with ZnONPs significantly alleviated the negative impacts of chronic waterborne-Cu exposure on growth performance, physiological changes, gene expression, and tissue architecture, especially at 30 mg kg-1 diet level. In particular, the inclusion of ZnONPs at the 30 mg kg-1 diet level produced better outcomes than the 20 mg kg-1 diet. Overall, ZnONPs could be added as a feed supplement in the C. gariepinus diet to boost the fish's health and productivity and alleviate the stress condition brought on by Cu exposure.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37939898

RESUMO

The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1ß, il-6, il-8, and il-10), transforming growth factor-ß, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.


Assuntos
Capsicum , Ciclídeos , Doenças dos Peixes , Animais , Capsicum/genética , Capsicum/metabolismo , Antioxidantes/metabolismo , Resistência à Doença , Ciclídeos/genética , Imunidade Inata , Suplementos Nutricionais , Dieta/veterinária , Glutationa Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controle
5.
Fish Shellfish Immunol ; 144: 109287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092091

RESUMO

Bacterial infection is considered one of the major issues in fish culturing that results in economic losses. Metal nanoparticles are a cutting-edge and effective disease management and preventive strategy because of their antibacterial ability. In this investigation, the selenium nanoparticles were prepared by a biological method using Nelumbo nucifera leaves extract. The in-vitro antibacterial activity of N. nucifera synthesized selenium nanoparticles (NN-SeNPs) was tested against Aeromonas veronii. A treatment assay was conducted on 210 Oreochromis niloticus (average body weight: 27 ± 2.00 g). A preliminary approach was conducted on 90 fish for determination of the therapeutic concentration of NN-SeNPs which was found to be 4 mg/L. Fish (n = 120) were categorized into four groups for 10 days; G1 (control) and G2 (NN-SeNPs) were non-challenged and treated with 0 and 4 mg/L NN-SeNPs, respectively. While, G3 and G4 were infected with 2 × 106 CFU/mL of A. veronii and treated with 0 and 4 mg/L NN-SeNPs, respectively. NN-SeNPs exhibited an inhibition zone against A. veronii with a diameter of 16 ± 1.25 mm. The A. veronii infection increased the hepato-renal biomarkers (alanine and aspartate aminotransferases and creatinine) than the control group. An oxidative stress was the consequence of A. veronii infection (higher malondialdehyde and hydrogen peroxide levels with lower glutathione peroxidase superoxide, dismutase, and catalase activity). A. veronii infection resulted in lower immunological biomarker values (immunoglobulin M, lysozyme, and complement 3) with higher expression of the inflammatory cytokines (interleukin-1ß and tumor necrosis factor-ɑ) as well as lower expression of the anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß). Therapeutic application with 4 mg/L NN-SeNPs prevented the disease progression; and modulated the hepato-renal function disruptions, oxidant-immune dysfunction, as well as the pro/anti-inflammatory cytokines pathway in the A. veronii-infected fish. These findings suggest that NN-SeNPs, employed as a water therapy, can safeguard fish from the harmful effects of A. veronii and serve as a promising antibacterial agent for sustainable aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Nanopartículas , Nelumbo , Selênio , Animais , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Aeromonas veronii , Citocinas/metabolismo , Dieta , Anti-Inflamatórios/metabolismo , Antibacterianos/metabolismo , Ração Animal/análise
6.
Aquat Toxicol ; 265: 106738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922777

RESUMO

This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κß), transforming growth factor-beta (TGF-ß), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1ß and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.


Assuntos
Boswellia , Ciclídeos , Doenças dos Peixes , Franquincenso , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Boswellia/metabolismo , Ciclídeos/metabolismo , Franquincenso/metabolismo , Poluentes Químicos da Água/toxicidade , Dieta/veterinária , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Suplementos Nutricionais/análise , Ração Animal/análise , Doenças dos Peixes/induzido quimicamente
7.
Heliyon ; 9(9): e19354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662722

RESUMO

Finding eco-friendly alternatives for antibiotics in treating bacterial diseases affecting the aquaculture sector is essential. Herbal plants are promising alternatives, especially when combined with nanomaterials. Neem (Azadirachta indica) leaves extract was synthesized using a chitosan nanocapsule. Chitosan neem nanocapsule (CNNC) was tested in-vitro and in-vivo against the Aeromonas sobria (A. sobria) challenge in Nile tilapia. A preliminary experiment with 120 Nile tilapia was conducted to determine the therapeutic dose of CNNC, which was established to be 1 mg/L. A treatment study was applied for seven days using 200 fish categorized into four groups (10 fish/replicate: 50 fish/group). The first (control) and second (CNNC) groups were treated with 0 and 1 mg/L CNNC in water without being challenged. The third (A. sobria) and fourth (CNNC + A. sobria) groups were treated with 0 and 1 mg/L CNNC, respectively, and challenged with A. sobria (1 × 107 CFU/mL). Interestingly, CNNC had an in-vitro antibacterial activity against A. sobria; the minimum inhibitory concentration and minimum bactericidal concentration of CNNC against A. sobria were 6.25 and 12.5 mg/mL, respectively. A. sobria challenge caused behavioral alterations, skin hemorrhage, fin rot, and reduced survivability (60%). The infected fish suffered a noticeable elevation in the malondialdehyde level and hepato-renal function markers (aspartate aminotransferase, alanine aminotransferase, and creatinine). Moreover, a clear depletion in the level of the antioxidant and immune indicators (catalase, reduced glutathione, lysozymes, nitric oxide, and complement 3) was obvious in the A. sobria group. Treatment of the A. sobria-challenged fish with 1 mg/L CNNC recovered these parameters and enhanced fish survivability. Overall, CNNC can be used as a new versatile tool at 1 mg/L as a water treatment for combating the A. sobria challenge for sustainable aquaculture production.

8.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1502-1516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431590

RESUMO

A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.


Assuntos
Azadirachta , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Ciclídeos/fisiologia , Hidrolisados de Proteína , Streptococcus agalactiae/metabolismo , Azadirachta/metabolismo , Proteínas de Plantas , Desenvolvimento Econômico , Resistência à Doença , Dieta/veterinária , Peso Corporal , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
9.
Aquat Toxicol ; 261: 106630, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406490

RESUMO

An acute exposure study of mancozeb (MAZ) fungicide was applied on Oreochromis niloticus for 96-h duration. Three hundred fish (20.50 ± 1.60 g) were assigned into six groups (50 fish/ group; 10 fish/replicate) and exposed to different six concentrations (0, 4, 8, 12, 16, and 20 mg L-1) of MAZ for 96-h. The Probit analysis program was used to compute the 96-h lethal concentration 50 (96-h LC50) of MAZ. During the exposure duration, the fish's behavior, clinical symptoms, and mortalities were recorded daily. After the exposure period was ended, the hematological, biochemical, immunological, and oxidant/antioxidant parameters were evaluated. The results of this study recorded the 96-h LC50 of MAZ for O. niloticus to be 11.49 mg L-1. Acute MAZ exposure badly affected the fish's behavior in the form of increased the breath gasping and swimming activity with aggressive mode. The exposed fish showed excessive body hemorrhages and fin rot. The survival rate of the exposed fish to MAZ was 100, 80, 66, 50, 38, and 30% in 0, 4, 8, 12, 16, and 20 mg L-1 MAZ, respectively. The hematological indices (red blood cell count, hemoglobin, packed cell volume%, and white blood cell count) were significantly decreased by increasing the MAZ exposure concentration (8-20 mg L-1). The acetylcholine esterase activity and immune indices (lysozyme, nitric oxide, immunoglobulin M, complement 3) were decreased by MAZ exposure (4-20 mg L-1). Acute MAZ exposure induced hepato-renal dysfunction and elevated stress-related parameter (cortisol) by increasing the MAZ concentration. A significant reduction in the antioxidant parameters (total antioxidant activity, catalase, and superoxide dismutase) with increasing the lipid peroxidation marker (malondialdehyde) was noticed by acute MAZ exposure (4 -20 mg L-1) in O. niloticus. Based on these outcomes, the MAZ exposure induced toxicity to the fish evident in changes in fish behavior, neurological activity, hepato-renal functioning, and immune-antioxidant responses which suggest physiological disruption.


Assuntos
Ciclídeos , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Ciclídeos/fisiologia , Etologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Dieta , Suplementos Nutricionais/análise , Ração Animal/análise
10.
Animals (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428433

RESUMO

The present study evaluated the potential effects of dietary inclusion of spray-dried bovine hemoglobin powder (SDBH) on the growth, gene expression of peptide and amino acid transporters, insulin growth factor-1 (IGF-1) and myostatin, digestive enzymes activity, intestinal histomorphology and immune status, immune-related gene expression, and economic efficiency in Nile tilapia, Oreochromis niloticus. Two hundred twenty-five fingerlings (32.38 ± 0.05 g/fish) were distributed into five treatments with five dietary inclusion levels of SDBH: 0, 2.5, 5, 7.5, and 10% for a ten-week feeding period. Dietary inclusion of SDBH linearly increased the final body weight (FBW), total weight gain (TWG), specific growth rate (SGR), and protein efficiency ratio (PER). Additionally, a linear decrease in feed conversion ratio (FCR) and daily feed intake relative to the daily BW was reported in the highest inclusion levels (7.5 and 10%). Dietary inclusion of SDBH was associated with a significant increase in the intestinal villous height (VH), villous width (VW), villous height: crypt depth ratio (VH: CD), and muscle coat thickness (MCT), with the highest values reported in SDBH7.5 group. Increased serum growth hormone levels and decreased serum leptin hormone levels were also reported by increasing the SDBH level. The serum glucose level was decreased in the SDBH7.5 and SDBH10 groups. The digestive enzymes' activity (amylase and protease) was increased by increasing the SDBH inclusion level. An up-regulation in the expression of peptide and amino acid transporters, IGF-1, and down-regulation of myostatin was reported in the SDBH2.5 to SDBH7.5 groups. Spleen sections showed more lymphoid elements, especially in the SDBH2.5 and SDBH7.5 groups. The SDBH inclusion increased the serum lysozyme activity, nitric oxide (NO), and complement 3 (C3) levels, with the highest values recorded in the SDBH5 group. The phagocytic % and the phagocytic index were increased by increasing the SDBH inclusion %. The expressions of immune-related genes (transforming growth factor-beta (TGF-ß), Toll-like receptor 2 (TLR2), and interleukin 10 (IL10)) were up-regulated by SDBH inclusion with the highest expression in the SDBH5 group. Economically, the feed costs and feed costs/kg gain were linearly decreased in the SDBH7.5 and SDBH10 diets. In conclusion, spray-dried bovine hemoglobin powder could be used as a protein source for up to 10% of the diets of Nile tilapia for better growth and immune status of fish.

11.
Fish Shellfish Immunol ; 131: 1006-1018, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379445

RESUMO

Two experiments were conducted in this study, using 250 Oreochromis niloticus (O. niloticus) (average weight 30.28 ± 0.27 g). The first experiment was conducted to investigate the 96-h lethal concentration 50 (LC50) of copper chloride (CuCl2) using the probit analysis, seventy fish was divided into seven different concentration of CuCl2 (0, 22, 23, 24, 25, 26, and 27 mg/L), the accurate Cu concentrations were (1.23, 5.36, 6.02, 6.98, 7.05, 7.93, 8.12 mg/L Cu). The second experiment was conducted for investigating the effect of dietary supplementation with thyme (Thymus vulgaris, T. vulgaris) and sweet basil (Ocimum basilicum, O. basilicum) essential oils (TEO and BEO respectively) against sub-lethal Cu exposure (1/10 96-h LC50 of CuCl2). About 180 fish was divided into six groups in triplicate (10 fish/replicate, 30 fish/group). Group 1 (C) was kept as a control group with no Cu exposure and was fed the control basal diet. Group 2 (C-Cu) was fed the control basal diet and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L) as a sub-lethal concentration of Cu, where the realistic Cu concentration was 3.976 mg/L. Group 3 (TEO) and group 4 (BEO) were fed the diets fortified with 1%TEO and BEO, respectively without exposure to Cu. Group 5 (TEO-Cu) and group 6 (BEO-Cu) were fed the diets fortified with 1%TEO and 1%BEO, respectively, and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L). The growth and behavioral performance, immunological response and its related gene expression, antioxidant status, stress biomarker indicators, apoptosis biomarkers, and histopathological alteration were investigated. The results of the first experiment showed that the 96-h LC50 of CuCl2 in O. niloticus was 25.740 mg/L with lower and upper confidence limits of 25.152 and 26.356 mg/L, respectively. The results of the second experiment showed that sub-lethal Cu exposure induced growth retardation (lowered final body weight, total weight gain, and specific growth rate %), behavioral abnormalities (slower swimming activity and feeding performance), immunosuppression (lowered nitric oxide, complement-3, lysozyme, total proteins, albumin, and globulin), and lowering the hepatic antioxidant functions (higher MDA, and lower SOD, CAT, and GPx) in the exposed fish. Furthermore, alteration in the immune-related genes expression (down-regulation of IL-10 and TGF-ß and up-regulation of IL-1ß, IL-6, IL-8, and TRL-4), hepato-renal dysfunction (elevated ALT, AST, urea, and creatinine), and high levels of serum stress indicators (cortisol and glucose) were markedly evident. sub-lethal Cu toxicity induced significant up-regulation of apoptosis biomarkers involving, nuclear factor-κß (NF-κß), Bcl-2 Associated X-protein (BAX), meanwhile, the expression of B-cell lymphoma 2 (BCL2) and Proliferating cell nuclear antigen (PCNA) was remarkably down-regulated. In addition, apoptosis was also evident by histopathological investigation of branchial, hepatic, and renal sections. TEO and/or BEO dietary supplementation mitigate the destructive impacts of sub-lethal Cu exposure in O. niloticus, depending on the results of our study, it could be concluded that TEO and BEO with a 1% dietary level could be a promising antioxidant, immunostimulant, anti-stress factors, and anti-apoptosis mediators against heavy metal contaminants (Cu) in O. niloticus, providing a solution to the problem of aquatic bodies pollution, consequently aiding in the development of aquaculture industry.


Assuntos
Ciclídeos , Ocimum basilicum , Óleos Voláteis , Thymus (Planta) , Animais , Antioxidantes/metabolismo , Ocimum basilicum/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Óleos Voláteis/toxicidade , Óleos Voláteis/metabolismo , Citocinas/genética , Suplementos Nutricionais/análise , Dieta/veterinária , Biomarcadores/metabolismo , Ração Animal/análise
12.
Fish Shellfish Immunol ; 128: 425-435, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985625

RESUMO

Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1ß, TGF-ß, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanocompostos , Ocimum basilicum , Albuminas/metabolismo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Quitosana/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Aditivos Alimentares , Expressão Gênica , Glucose/metabolismo , Glutationa Peroxidase/metabolismo , Hormônio do Crescimento , Rim Cefálico/metabolismo , Interleucina-10/metabolismo , Malondialdeído/metabolismo , Muramidase/metabolismo , Óxido Nítrico/metabolismo , Ocimum basilicum/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Animals (Basel) ; 9(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756970

RESUMO

The present study was conducted to assess the effect of replacing fish meal with whey protein concentrate (WPC) on the growth performance, histopathological condition of organs, economic efficiency, disease resistance to intraperitoneal inoculation of Aeromonas hydrophila, and the immune response of Oreochromis niloticus. The toxicity of WPC was tested by measuring the activity of caspase 3 as an indicator of cellular apoptosis. Oreochromis niloticus fingerlings with average initial weight 18.65 ± 0.05 gm/fish (n = 225) for a 10-week feeding trial. The fish were randomly allocated to five experimental groups, having five replacement percentages of fish meal with WPC: 0%, 13.8%, 27.7%, 41.6%, and 55.5% (WPC0, WPC13.8, WPC27.7, WPC41.6, and WPC55.5); zero percentage represented the control group. The results show that the fish fed WPC had the same growth performance as the WPC0. The total weight of bacterially challenged surviving fish increased linearly and quadratically (p ≤ 0.05) by increasing the replacement percentage of fish meal with WPC. The growth hormone, nitric oxide, IgM, complement 3, and lysozyme activity were seen to increase significantly in WPC27.7, especially after a bacterial challenge. The phagocytic percentage and phagocytic index increased significantly in WPC27.7, WPC41.6, and WPC55.5 groups. Histopathological examination of liver sections was badly affected by high replacement in WPC41.6-55.5. The activity of caspase 3 in the immunohistochemical stained sections of the intestine was increased significantly by increasing the inclusion level of WPC. Economically, the total return of the total surviving fish after the bacterial challenge was increased significantly by fish meal replacement with WPC. It could be concluded that WPC could replace the fish meal in Nile tilapia diets up to 27.7%, with improving the gut health, the total weight of survival fish, and immune status of fish challenged with A. hydrophila. High inclusion levels of WPC are not recommended in fish diets, since they negatively affected the intestinal and liver tissues and increased the level of cellular apoptosis, as indicated by the increased caspase 3 activity. Further researches are recommended to evaluate the effect of fish meal replacement with WPC on the histopathological examination of the kidney and to test the capacity of serum IgM to clot the bacteria used for the challenge.

14.
J Therm Biol ; 84: 26-35, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31466763

RESUMO

This study was conducted to investigate the effects of dietary dried Rocket Leaves meal (DRLM) supplementation on growth performance, immune response, and antioxidant capacity of Oreochromis niloticus reared under different water temperature. For this purpose, five hundred and forty apparently healthy O. niloticus were allocated into nine groups fed three DRLM-supplemented diets (0,1, and 3%) and reared at three water temperature (18, 24, and 32°C) in a 3 × 3 total randomized factorial design. The results revealed that exposure of fish to low (18°C) or high (32°C) temperatures for 30 days evoked significant growth retardation, depleted antioxidant enzymes activities (Catalase; CAT and super oxide dismutase; SOD), lipid peroxidation (malondialdehyde; MDA), immunosuppression, altered cortisol level compared to those reared at 24°C. Moreover, a marked down-regulation of oxidative stress related genes with up-regulation of interleukin 1ß gene were apparent. In contrast, DRLM incorporation, particularly at 3%, in heat or cold stressed fish diets significantly enhanced growth, restored IgM and lysozymes levels, and SOD and CAT activities. Also, both the MDA and cortisol levels were significantly depressed. Furthermore, both antioxidant and immune-related genes expression were significantly corrected. Conclusively, 3% DRLM dietary supplementation in tilapia diet could be a promising strategy to alleviate the temperature stress-induced negative impacts on fish health and performance.


Assuntos
Brassicaceae , Ciclídeos/fisiologia , Resposta ao Choque Frio , Suplementos Nutricionais , Resposta ao Choque Térmico , Folhas de Planta , Preparações de Plantas/farmacologia , Animais , Catalase/metabolismo , Dieta/veterinária , Tolerância Imunológica , Imunoglobulina M/imunologia , Malondialdeído/metabolismo , Muramidase/imunologia , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...